CBCS SCHEME

USN				-								15EC53
-----	--	--	--	---	--	--	--	--	--	--	--	--------

Fifth Semester B.E. Degree Examination, Dec.2018/Jan.2019 Verilog HDL

Time: 3 hrs.

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain top-down design methodology with an example. (06 Marks)
 - b. Explain the typical design flow for designing VLSI IC circuits, with a neat flow chart.

(10 Marks)

OR

- 2 a. Explain Bottom-up design methodology with an example. (06 Marks)
 - b. Explain the different levels of abstraction used for programming in verilog. (10 Marks)

Module-2

- 3 a. Explain system tasks and compiler directives in verilog. (06 Marks)
 - b. What are the basic components of a module? Explain all the components of a verilog module with a neat block diagram. (06 Marks)
 - c. Write verilog description of SR Latch. Also write stimulus code. (04 Marks)

OR

- 4 a. Write a note on: i) Registers ii) Nets iii) Arrays iv) Parameters v) Vectors vi) Memories. (12 Marks)
 - b. Declare a top-level module "Stimulus". Define Reg_in (4 bit) and Clk (1 bit) as register variables and Reg_out (4 bits) as wire. Instantiate the module "shift-reg" in "stimulus" block and connect the ports by ordered list. Declare A (4 bit) and clock (1 bit) as inputs and B (4 bit) as output in "shift-reg" module. (No need to show internals). Write a verilog code for the above. (04 Marks)

Module-3

- 5 a. Write the verilog description of 4 bit ripple carry adder at gate level abstraction, with a neat block diagram. Also, write stimulus block. (08 Marks)
 - b. What would be the output of the following:

a = 4'b1010, b = 4'b1111

- i) a & b (ii) a && b
- iii) & a
- iv) a >> 1
- v) a >>> 1
- vi) $y = \{2\{a\}\}$

$$vii) a \wedge b \qquad viii) z = \{a, b\}.$$

(08 Marks)

OR

6 a. A full subtractor has three 1-bit inputs x, y and z (previous borrow) and two 1-bit outputs D(Difference) and B(Borrow). The logic equations are

$$D = \overline{x}yz + \overline{x}yz + \overline{x}yz + xyz$$

$$B = xy + xz + yz$$

Write verilog description using dataflow modeling. Instantiate the subtractor module inside a stimulus block and test all possible combinations of inputs x, y and z. (08 Marks)

b. Design 4:1 multiplexer using gate level modeling or structural description. Write stimulus block. (08 Marks)

		Module-4	
7	a.	Explain structured procedure statements in verilog.	(06 Marks)
	b.	Write a verilog behavioral 8:1 multiplexer program using case statement.	(06 Marks)
	c.	Explain casex and casez statements in verilog.	(04 Marks)

8	a.	Explain procedural assignment statements in verilog.	(06 Marks)
	b.	Explain sequential and parallel blocks with examples.	(06 Marks)
	c.	Write a verilog code to find the first bit with a value 1 in	
		Flag = 16'b 0010_0000_0000_0000.	(04 Marks)

Module-5

9 a. Explain the design tool flow followed in VLSI design with a neat flow diagram. (10 Marks)

b. Write VHDL Data flow description of 1 Bit full Adder. (06 Marks)

a. Explain the relationship between a design entity and its entity declaration and architecture body in VHDL.
b. Write VHDL structural description of 1 Bit Full Adder.
(10 Marks)
(06 Marks)